引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 528次   下载 313 本文二维码信息
码上扫一扫!
分享到: 微信 更多
活性元素Ti和SiO2界面结合机制的第一性原理计算
薛海涛, 魏鑫, 郭卫兵, 张小明
作者单位E-mail
薛海涛, 魏鑫, 郭卫兵, 张小明  xuehaitao@126.com;gwbingo@163.com 
摘要:
Ti元素是钎焊SiO2f/SiO2复合材料重要的活性元素,因此,使用第一性原理计算研究了Ti和SiO2的界面结合机制. 分别建立了两种不同的终止面和化学计量比的界面,使用界面分离功、电子行为和界面能研究了界面原子间的结合. 结果表明,在O终止界面中,界面处Ti和O形成很强的离子-共价键,界面分离功最大可达到8.99 J/m2. 在Si终止面界面中,Ti和Si形成共价-离子键,界面分离功为2.65 J/m2. 在温度为1 173 K时,当Si的活度大于e−35时,富Si界面的界面能更低,界面倾向于形成Ti-Si化合物. 当Si的活度小于e−35时,富O界面在热力学上更加稳定,界面倾向于形成Ti-O化合物. SiO2中的Si被Ti置换出后,Si扩散进入钎料,活度升高,与钎料中的Ti反应生成Ti-Si化合物,所以界面结构为SiO2/Ti-O化合物/Ti-Si化合物/钎料.
关键词:  钛/二氧化硅|第一性原理|界面结合机制|分离功|电子行为
DOI:10.12073/j.hjxb.20190712001
分类号:
基金项目:
First principle calculation of the binding mechanism between Ti and SiO2
XUE Haitao, WEI Xin, GUO Weibing, ZHANG Xiaoming
Abstract:
Ti is an important active element to join SiO2f/SiO2 composite materials. Therefore, the bonding mechanism of Ti and SiO2 was studied by using first principle calculation. Two kinds of interfaces with different termination and stoichiometric ratio were studied by the results of work of separation (Wsep), electron behavior and interface energy. It is found that in the O-terminated interface, Ti and O atoms form a strong ionic-covalent bonding, resulting in the largest Wsep of 8.99 J/m2. In the Si-terminated interface, Ti and Si atoms form covalent-ionic bonding, and the Wsep is 2.65 J/m2. At the temperature of 1 173 K, when the activity of Si is larger than e−35, the interface of Si-terminated interface is more lower. The Ti-Si compounds are more favored at the interface. When the activity of Si is smaller than e−35, the O-terminated interface is more stable in thermodynamics and the Ti-O compounds are more favored at the interface. After Si in SiO2 in replaced by Ti, Si will diffuse into the solder and react with Ti in the solder to form Ti-Si compounds, so the interface struture is SiO2/Ti-O compound/Ti-Si compound/solder.
Key words:  Ti/SiO2|first principle calculation|interface bonding mechanism|work of separation|electron behavior