引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 190次   下载 159 本文二维码信息
码上扫一扫!
分享到: 微信 更多
X射线焊缝图象计算机质量检测
许志祥1, 黄思军1, 卢宏1, 孙秋冬2
1.上海科技大学;2.上海第二工业大学
摘要:
提出了利用二次曲线分段拟合导出的梯度模板对焊缝缺陷进行检测的算法,并按人眼视觉特性对焊缝缺陷进行轮廓跟踪,从而有效地检测出焊缝缺陷.统计识别和模糊识别方法相结合,根据焊缝缺陷的形状特征,对各种焊缝缺陷进行识别分类.按照焊缝质量评级的国家标准对焊缝缺陷进行单独评级及综合评级.试验结果表明,术文提出的方法不但能给出正确的检测与评级结果且有较高的检测速度.
关键词:  图象识别  计算机视觉  焊缝质量检测  缺陷识别  质量评级
DOI:
分类号:
基金项目:
Computer quality inspection for X ray welding image
Xu Zhixiang1, Huang Sijun1, Lu Hong1, Sun Qiudong2
1.Shanghai University of Science and Technology;2.Shanghai Second Polytechnic University
Abstract:
This paper presents a defect detection algorithm to detect the defects of welding image successfully. This algorithm is based on the gradient mask which is derived from piecewise fitting method using quadratic function and contour tracing method according to the human vision characteristics. By incorporating statistic recognition with fuzzy recognition and analysing the shapes and features of the welding defects, various welding defects are recognized and classified. Individual and comprehensive quality classifications are made for the welding defects according to the National Standard. The experimental results show that the proposed method performs satisfactorily for the defect detection and quality classification with higher inspection speed.
Key words:  image recognition  computer vision  welding quality inspection  defect recognition  quality classification