引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 214次   下载 184 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于信号特征提取的电阻点焊质量在线评判
张鹏贤, 张宏杰, 马跃洲, 陈剑虹
兰州理工大学材料科学与工程学院, 兰州 730050
摘要:
以焊点接头强度作为焊点质量评判的指标,通过对点焊过程焊接电流、动态电阻、电极位移信号的同步采集和特征分析,提取若干特征参量监测点焊过程,依据特征参量与焊点接头抗剪强度间的相关分析结果,选取来自不同监测信号的7个特征参量建立了表征点焊过程的特征模式,并将此转化为计算机可以识别的模式矩阵,同时以焊接电流参数为模式分类的依据,建立不同模式矩阵类别和焊点接头抗剪强度之间的映射,将模式矩阵作为Hopfield神经网络的记忆样本存储于网络,利用网络联想记忆的功能实现对未知样本点焊过程的模式识别,进而实现点焊质量的评判。网络测试结果表明,利用Hopfield网络进行焊点质量在线评判可以得到满意的效果。
关键词:  电阻点焊  特征提取  数据泛化  Hopfield神经网络  模式识别
DOI:
分类号:
基金项目:国家自然科学基金资助项目(50275028)
On-line quality estimation of resistance spot welding based on extraction of signals feature
ZHANG Peng-xian, ZHANG Hong-jie, MA Yue-zhou, CHEN Jian-hong
College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Abstract:
For estimating joint quality of resistance spot welding,joint tensile-shear strength was taken as a kind of evaluation criterion. Welding current,dynamic resistance and electrode displacement signals were simultaneously monitored and collected in welding process.Through character analysis,several characteristic parameters relating to the weld quality were extracted from the three signals.At the same time,based on the correlation analysis results between the parameters and weld strength,7 characteristic parameters were selected to taking as the characteristic pattern of welding process.All characteristic patterns were converted into two-dimension pattern vectors,which were accessed by the computers.Then those patterns were classified according to different welding current.At last,a kind of estimating model of Hopfield neural network was established on the mapping of different pattern vectors and joint strength.Network test results indicated that Hopfield neural network model could get satisfactory effect in resistance spot welding(RSW) quality online evaluation.
Key words:  resistance spot welding  feature extraction  data generalization  Hopfield neural network  pattern recognition