引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 207次   下载 194 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于自适应模糊神经网络焊接接头力学性能预测
张艳飞, 董俊慧, 张永志
内蒙古工业大学材料科学与工程学院, 呼和浩特 010051
摘要:
通过对TC4钛合金进行TIG焊,并测定接头的抗拉强度、抗弯强度和断后伸长率,获得网络仿真所需的数据。结合使用BP算法与最小二乘相结合的混合算法,建立了用于焊接接头力学性能预测的自适应模糊神经网络模型。利用该模型进行仿真,其平均误差远小于7%。结果表明,该模型可根据焊接工艺参数对焊接接头的抗拉强度、抗弯强度和断后伸长率等力学性能进行较为准确的预测,并且具有建模快、模型简单、预测速度快、预测精度高,泛化能力强的优点,从而为焊接接头力学性能预测提供了一条有效的途径。
关键词:  自适应模糊神经网络  力学性能  预测
DOI:
分类号:
基金项目:教育部"春晖计划"资助项目(Z2005-2-01002)
Prediction mechanical properties of welded joints based on ANFIS
ZHANG Yanfei, DONG Junhui, ZHANG Yongzhi
College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
Abstract:
An method to predict the mechanical properties of welded joints based on adaptive fuzzy neural networks (ANFIS) was studied.By TC4 titanium welded by tungsten inert-gas welding, the tensile strength, bend strength and elongation of welded joints were tested as the data for networks simulation.With the hybrid algorithm of back propagation algorithm and least square algorithm, the model of adaptive fuzzy neural networks to predict mechanical properties of welded joints was established.The results of network simulation show that, the average error is far from less than 7%;according to welding parameter, the mechanical properties including tensile strength, bend strength and elongation can be predicted more accurately by this model;it has the merits of building model easily, simple structure, high precision and good generalization.Consequently, this method can provide an effective approach to estimate mechanical properties of welded joints.
Key words:  adaptive fuzzy neural net works  mechanical properties  prediction