引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 228次   下载 284 本文二维码信息
码上扫一扫!
分享到: 微信 更多
钛合金电子束焊缝熔凝区形状的人工神经网络模型
卢志军1, 王亚军1,2
1.北京航空制造工程研究所, 高能束流加工技术国防科技重点实验室, 北京 100024;2.北京航空航天大学, 机械工程与自动化学院, 北京 100083
摘要:
通过采用人工神经网络方法对TC4钛合金电子束焊缝熔凝区形状尺寸进行预测研究.在大量工艺试验的基础上,采集网络训练样本,并对训练样本和测试样本进行标准化,通过确定合适的人工神经网络模型、网络结构、网络算法以及网络训练次数,建立了从聚焦电流、电子束流和焊接速度到焊缝熔深、熔宽、正面焊缝宽度、深宽比、焊缝余高、钉头半角的BP网络映射模型.结果表明,网络的最大输出相对误差不超过5%,说明该网络具有较强的映射能力,能满足预测要求。
关键词:  电子束焊接  熔凝区形状  人工神经网络
DOI:
分类号:
基金项目:国防"973"基础研究项目(61362)
ANN model to predict geometry shape of fusion-solidification zone in electron beam welding
LU Zhijun1, WANG Yajun1,2
1.National Key Laboratory of High Energy Density Beam Processing Technology, Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China;2.School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Abstract:
The geometry shape of fusion-solidification zone in electron beam welding of TC4 titanium alloy was predicted based on artificial neural network.Based on adaptive network model, network structure, and training algorithm and times, a BP neural network mapping model from focused current, beam current and welding speed to fusion penetration, fusion width, top weld width, depth-to-width ratio, weld reinforcement, nailhead half-angle was established.Training samples were obtained from abundant process experiments and normalized for reducing prediction error.The predicted results indicate that maximum relative error is less than 5%, and the prediction requirement can be satisfied.
Key words:  electron beam welding  geometry shape of fusion-solidification zone  ANN