引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 736次   下载 0 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于神经网络的焊机参数预测方法
杨亚超, 全惠敏, 邓林峰, 赵振兴
作者单位
杨亚超, 全惠敏, 邓林峰, 赵振兴  
摘要:
针对脉冲MIG焊参数众多,不易调节的特点,提出了一种基于神经网络的焊机参数预测方法. 该方法采用LM(levenberg-marquarlt)算法建立了焊机参数的BP(back propagation)神经网络模型,充分利用已知的理想数据对网络进行训练,实现了焊接过程中任一给定焊接电流状态下焊机输出参数的预测;利用焊接参数的预测值分别对单、双脉冲MIG焊进行了试焊. 结果表明,基于神经网络的焊机参数预测方法精度较高,焊接过程稳定,焊缝成形美观,能够实现良好的一元化调节.
关键词:  神经网络  预测方法  一元化调节  脉冲焊
DOI:10.12073/j.hjxb.2018390008
分类号:
基金项目:
Prediction method of welding machine parameters based on neural network
YANG Yachao, QUAN Huimin, DENG Linfeng, ZHAO Zhenxing
Abstract:
In view of the fact that pulse MIG welding has many parameters and is difficult to adjust, a welding parameter prediction method based on neural network is proposed. This method, having established BP neural network model of welding parameters by adopting LM(levenberg-marquarlt) algorithm, and making full use of the known data to train the network, have realized the prediction of the output parameters in any given welding current state, and then conduct test weld on single and double pulse MIG welding respectively by using the predicted values of welding parameters. The results show that the prediction method of welding parameters based on neural network is of high accuracy, that the welding process is stable, and that the seams can be well-formed, thus achieving a good unified adjustment.
Key words:  neural network  prediction method  unified adjustment  pluse welding